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Abstract. In the limit of small deformation (true strainε < 10%) it is possible to derive
from curves of the deviation from Matthiessen’s rule (DMR) for samples containing dislocations
the anisotropy parameter of electron–phonon scattering(Aph) as a function of temperature. In
this case the fittedAph-curves for copper and silver samples based on the two-group model
(TGM) are in excellent agreement with the theoretical calculation of Hasegawa and Kasuya. In
contrastAph-curves derived from low-field Hall effect data within the (uncorrected)TGM are not
directly suitable forDMR calculations due to the different averaging of relaxation times for the
conductivity and the Hall effect. For understandingDMR curves with 10%< ε < 100% the
two-group model is insufficient. Up to about 0.2 of normalizedDMR seems to result from aDMR

between small- and large-angle scattering.

1. Introduction

The importance of the anisotropy of electron–phonon scattering for electronic transport
phenomena in noble metals has been known of for a long time [1]. Up to now it has
seemed that the most reliable information about this topic has been derived from the low-
field Hall effect (LFHE) measurements of Barnard [2, 3] by use of the two-group model (TGM)
of the Fermi surface [1]. This was the basis on which the anisotropy parametersAph(T )

for electron–phonon scattering in ideally pure silver [2] and copper [3] were estimated.
However, theseAph(T )-results extracted in the framework of theTGM from

measurements of theLFHE did not seem to be very useful for the calculation of curves
of the deviation of Matthiessen’s rule (DMR) for copper samples containing dislocations
[4]. As shown in an extensive analysis of theTGM [5] theseAph(T )-values obtained from
the LFHE (i) depend on the neck angle of theTGM and (ii) are expected to be influenced
by the different averaging of relaxation times in theLFHE method compared with that in
the conductivity orDMR method (which can be described by ‘combined conductivities’
[4]). Here it should be noted that in the case of the conductivity (orDMR) method the
averaging of relaxation times is simpler than for theLFHE because no quadratic averaging
and no averaging with the curvature of the Fermi surface is involved [5]. So it is not
surprising that the extreme values ofAph(T ) at low temperatures obtained fromLFHE data
by Barnard [3] are not the best choice for the description of theDMR curves for copper
samples containing dislocations [4]; for samples with deformationsε > 20% even isotropic
electron–phonon scattering seemed to be needed [4]. In this context the ‘more isotropic’
theoreticalAph(T )-curve of Hasegawa and Kasuya [6] calculated for the ideal electrical
resistivity of copper is of interest. This curve deviates considerably from Barnard’s curve
for copper [3] and will be checked forDMR calculations in the present paper.
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The TGM and the ‘three-scatterer formula’ turned out to be good concepts [4, 5, 7]
for the description of theDMR step height of high-purity samples of the noble metals
containing dislocations in the temperature range 4.2 K to 140 K. However, there remained
always a considerable discrepancy between the experimental and modelledDMR curves in
the temperature range from say 40 K to 100 K. The aim of the present paper is to investigate
this discrepancy in more detail.

We calculateAph(T )-curves directly from experimentalDMR curves with increasing
dislocation densities assuming the validity of the three-scattererDMR formula in order to
see how theseAph(T )-curves differ from published curves. For this purpose we take into
account also the correct anisotropy parameters of electron–impurity scattering measured via
theLFHE which vary considerably from material to material. So we hope to establish suitable
Aph(T )-curves for the experimentalDMR curves of noble metals containing dislocations at
least in the limit of low deformation.

In order to explain the discrepancy between the experimental and modelledDMR

curves we consider a possibleDMR contribution which cannot be explained by theTGM:
the additionalDMR which occurs if large-angle and small-angle scattering are present
simultaneously and the relaxation time approximation fails [8]. This additionalDMR

contribution can be estimated approximately.
Finally important information for all three noble metals is obtained if different quantities

such as the ideal electrical resistivity, theDMR, the intrinsic pure Hall constant and the
Aph(T )-curves are plotted on a temperature scale normalized to the Debye temperature.

2. Electron–phonon scattering in theTGM

It is well accepted [1, 2] that in the noble metals a significant anisotropy of electron–phonon
scattering arises from the freezing out of Umklapp processes for belly electrons when the
temperature is lowered. In theTGM this behaviour is simply described by a change in the
anisotropy parameterAph for electron–phonon scattering:

Aph = τNP/τBP (1)

where τNP and τBP are the relaxation times on the Fermi surface for the neck and belly
electrons of a pure sample (where the impurity contribution to the resistivity can be
neglected), respectively. The most direct access toAph is from the low-field Hall coefficient
RH of a very pure sample material [5]:

−RH = sf [1 + (r/s)A2
pha]/(1 + Aphb)2. (2)

a, b and f are integrals over the Fermi surface and depend on the choice of the neck
angle of theTGM. a and b are independent of temperature.f depends only slightly on
temperature via the lattice expansion but this can be neglected for the present investigation.
r and s are correction parameters near unity which have to be taken into account if the
LFHE and electrical resistivity data are based on unique relaxation times. This means that
the temperature dependence ofRH is only given by the variation ofAph with temperature.
In the following we use only the physically indicated neck anglesθ for theTGM as discussed
in [5] and shown in table 1. This means in the cases of copper and gold that the corrected
TGM is simplified by using the ‘a = 0 version’.

It follows from equation (2) that

Aph = [−bRH −
√

f (−arRH − b2sRH − af rs)]/(b2RH + af r) (3)
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if a = 0, and thus

Aph = [−bRH −
√

−f b2sRH]/(b2RH) (4)

or

s = [−RH(1 + Aphb)2]/f. (5)

Otherwise the ideal resistivityρP can be written within theTGM as (h̄ is Planck’s
constant)

1/ρP = [e2/(12π3h̄)](τBPc + τNPd) with c =
∫

B
v dS and d =

∫
N

v dS.

(6)

Common terms inRH (2) and ρP (6) are τNP, τBP and b = d/c. From combining
equations (2) and (6)τNP andτBP could only be calculated correctly if the exact values of
r and s were known. Here it should be noted that, especially for silver, the standardTGM

(r = s = 1) does not work becauseRH yields negative values forAph (see table 2).

Table 1. Parameters of theTGM used.

Cu Ag Au

θ (deg) 18.7 16.5 17.9
a 0 0.061 0
b 0.219 0.150 0.214
f (10−11 m3 C−1) 7.343 10.332 10.046
c (1027 m−1 s−1)† 2.156 2.317 2.004
d (1026 m−1 s−1)† 4.732 3.464 4.298

†Calculated by Watts [9].

In the case of theDMR for samples containing dislocationsAph is involved via the
three-scatterer formula [4]:

δ(T , ε) =
3∑

j=1

ρjρj+1bAj+2(Aj − Aj+1)
2

( 3∑
j=1

ρj (1 + bAj )
2Aj+1Aj+2

)−1

(7)

with the cyclic notationρ4 = ρ1, ρ5 = ρ2, A4 = A1, A5 = A2, whereAj is the scattering
anisotropy parameter of thej th scatterer (phonons, impurities and dislocations) andρj is
the resistivity of thej th scatterer on its own. The termb is the same as in (2).

3. Experimental details

3.1. Sample material

The sample material used for the present investigation was oxygen-annealed 99.99%-pure
silver and gold described in [5], 99.9999%-pure copper from METALLEUROP (ME copper
in the following) and oxygen-annealed 99.99%-pure copper from GOODFELLOW (GF

copper in the following) described in [4, 7, 10]. The procedure for theDMR measurements
and evaluation of experimental curves can be found in [4, 5, 7, 10].
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Figure 1. NormalizedDMR curves forGF copper samples. The numbers indicate the true strain
ε in %. R indicates deformation by rolling.

Figure 2. NormalizedDMR curves forME copper samples. Numbers: true strainε in %.

3.2. DMR results used for the model calculations

Different aspects ofDMR curves of the copper materials were published recently [4, 7, 10].
Usually theDMR is described as a function of temperature depending on the experimental
dislocation resistivityρd,ex(T ) or as the normalized quantityD(T ) = ρd,ex(T )/ρd,ex(4.2),
where ρd,ex(4.2) is the experimental dislocation resistivity at 4.2 K. Figure 1 shows a
summary of smoothed experimentalD(T )-curves for a set ofGF copper samples (ε = 2%
to 104%) to outline the principal behaviour of experimentalDMR curves for noble metals.
Similar curves are shown in figure 2 for some only slightly deformedME copper samples.
D(T )-curves for silver (ε = 20% to 116%) can be seen in figure 3. For a better overview
the single data points are not shown, but the quality of data can be assessed elsewhere
[4, 5, 10, 11] (see also figure 8). The curves of figures 1 to 3 as well as two curves for
gold shown in [5] will be analysed in the following sections.
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Figure 3. NormalizedDMR curves for silver samples. Numbers: true strainε in %. R indicates
deformation by rolling.

Figure 4. The ideal phonon resistivity (ρP(T )) of the noble metals normalized to the Debye
temperature2. ——, copper; – – –, silver; and· · · · · ·, gold.

3.3. Debye normalization

It is well known [12] that a universal resistivity curve is obtained for many metals if the
temperature is normalized to the Debye temperature2 and the resistivity to its value at2.
Figure 4 shows this picture for the ideal phonon resistivity of the noble metals [13] which
is used in the following analysis. For2 we use the values 346 K for copper, 226 K for
silver and 164 K for gold [14]. Only the curve for gold in figure 4 has a small deviation,
but the global behaviour of all three noble metals is the same.

Figure 5 shows theDMR curves atε ≈ 100% for the samples Cu100 (copper), Ag100
(silver) and Au100 (gold) of [5] normalized to2. SinceD(T ) is only a weak function of
temperature above 100 K the approximationD(T )/D(130 K) ≈ D(T )/D(2) is used. For
all three noble metals these reducedDMR curves lie within a certain band, which shows
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Figure 5. DMR curves of noble metals containing dislocations atε ≈ 100% (see the text)
normalized to the Debye temperature2. �, copper;×, silver; andM, gold.

that theDMR is also governed by very similar scattering behaviour in each noble metal. In
contrast to the phonon resistivity in figure 4, the errors of theDMR curves are appreciably
larger (error bars twice the symbol sizes have to be assumed). Moreover some genuine
differences in the individual anisotropy parameters due to differences in the Fermi surface
[5] should be monitored. TheDMR curves atε ≈ 50% for the samples Cu50 (copper), Ag50
(silver) and Au50 (gold) of [5] give exactly the same band in a reduced plot, so the latter
are not shown.

Figure 6. The low-field Hall coefficient of ideal pure noble metals (see the text) normalized to
the Debye temperature2. �, copper;×, silver; and (4) gold.

The low-field Hall coefficient of pure noble metals (electron–phonon scattering is
dominant) normalized to2 can be seen in figure 6 assumingRH(2) ≈ RH(300). The
RH(T )-data are taken from the work of Barnard for ideally pure copper [3] and ideally pure
silver [2]. TheRH(T )-data for gold are taken from tabulated results of Aldersonet al [15]
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as far as available in the low-field condition (only down to 40 K). Thus, only the influence
of electron–phonon scattering and of different Fermi surfaces [5] is shown in figure 6.
Obviously, the reducedRH-data also lie within a certain band, like theDMR curves in
figure 5. The data for copper and silver agree roughly, whereas for gold a tendency towards
some deviation is indicated (the largest deviation from the spherical Fermi surface [5]).
Unfortunately, up to now noLFHE data for pure gold have been available for temperatures
between 40 K and 4.2 K.

From figures 4, 5 and 6 it may be concluded that theAph(T )-curves for all three noble
metals reduced to the Debye temperature should also lie within some band. This means
that if theAph(T )-function is known for at least for one metal, theAph(T )-curves for the
other two metals could be estimated by applying the related Debye temperature.

4. Discussion

4.1. The anisotropy parameters of electron–phonon scattering

From a previous paper [5] it can be learnt that theDMR gives simpler and more reliable
information about anisotropy parameters than theLFHE where the situation is complicated by
the curvature of the Fermi surface and quadratic averaging effects (as long as the correction
parameters are not known). This was shown particularly forAdis, the anisotropy parameter
for electron–dislocation scattering [5].

Figure 7. The anisotropy parameter of electron–phonon scattering (Aph) for the noble metals
as a function of temperature based on [6]. ——, copper (theAph–Cu-curve);- - - -, silver (the
Aph–Ag-curve); and· · · · · ·, gold (theAph–Au-curve).

For Aph(T ) for copper it was shown very roughly in [4] that a quasi-isotropicAph(T )-
curve (without being based on physical arguments) gives better fits to experimentalDMR

curves at low deformation (ε < 20%) than the rather anisotropic curve of Barnard [3]
derived from theLFHE for copper. This fact encourages us to use the nearly forgottenAph-
curve of Hasegawa and Kasuya [6] calculated for copper (theHK-curve in the following)
which lies in fact between the quasi-isotropic curve of [4] and Barnard’s curve. TheHK-
curve was calculated by using a variational method and adjusted to the (ideal) measured
electrical resistivity. This calculation was based on the band structures of Burdick and
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the measured phonon spectrum. TheHK-curve starts at 2 K with the value 0.27 (compare
figure 7 described below), has the value 0.48 at 30 K, reaches the value 1.0 at 165 K and
the value 1.04 at 300 K [6]. Although the investigations of Hasegawa and Kasuya [6, 16]
have been cited many times [17–21], no attention has been paid to this curve, because it
did not fit to theLFHE of copper [3] and hadAph-values slightly larger than unity near
room temperature. The latter problem was commented on in [6] as possibly resulting from
a somewhat too large s–d hybridization effect in Burdick’s band.

In order to have no contradiction to the successful assumption of isotropic electron–
phonon scattering (Aph = 1) near room temperature [5], we simply set the high-temperature
part of theHK-curve to unity (which is a rather small correction to the maximum value 1.04
of the original curve) and smoothed the curve (using a curve-fitting program). The result
can be seen in figure 7 as the full line (theAph–Cu-curve in the following). Additionally, as
suggested above, we have reduced this curve by2(Cu) and multiplied the reduced values
by 2(Ag) and 2(Au) in order to get also some estimate of theAph(T )-curves for silver
and gold . These results are shown by the dashed (theAph–Ag-curve) and dotted lines (the
Aph–Au-curve) in figure 7.

Figure 8. Fits of experimentalDMR data of twoME copper samples (points: (×) ε = 1% and
(�) ε = 4.9%) using theAph–Cu-curve (——) and theAph-curve after Barnard [3] (· · · · · ·).
The fitting condition is the coincidence of experimental data and models at 4.2 K and 130 K.

Figure 8 showsDMR fits (see equation (10) below) forME copper samples with
ε = 1% andε = 4.9% using theAph–Cu-curve of figure 7. Excellent agreement with
the experimental curves can be seen. The same good result is obtained for theGF copper
samples withε = 5.1% having a normalizedDMR curve identical to that of theME copper
at 4.9%. Therefore the latter curve is not shown. For comparison the fits with theAph(T )-
curve of Barnard obtained from theLFHE data are also shown in figure 8 (dotted lines);
however, they deviate significantly from the fits with theAph–Cu-curve (after Hasegawa
and Kasuya [6]) and the experimental points. Hence, we have the very clear result that
also in case of electron–phonon scattering, theLFHE and electrical resistivity orDMR require
different relaxation times if the different averaging of the two effects is not considered in
the TGM (see the parameters in (2) to (5)). For the case ofAph-values at 300 K this was
already indicated in [5].

Table 2 underlines the differentAph(T )-values calculated from theLFHE data within the
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Figure 9. FittedAph-curves for the experimentalDMR curves of theME copper shown in figure 2.
——, ε = 4.9%; · · · · · ·, ε = 1%; - - - -, ε = 3.1%; — · —, ε = 2%; N, the theoreticalAph–
Cu-curve and×, theAph-curve for copper after Barnard [3] for comparison.

standardTGM (r = s = 1) using (3) related to theAph(T )-curves of figure 7. The same
RH-data as for figure 6 were used. The values of the second column of table 2 (Cu(LF)) are
rather near to Barnard’sAph(T )-curve [3] obtained fromLFHE data. A graphical comparison
of this Barnard curve with theAph–Cu-curve (figure 7) can be seen in figure 9.

Table 2. A comparison ofAph(T )-values for the noble metals derived by two different methods.
LF indicates evaluation fromLFHE data,HK indicates values after the curves in figure 7 based on
[6]. ‘Neg’ indicates negative values which are unphysical.

T (K) Cu(LF) Cu(HK) Ag(LF) Ag(HK) Au(LF) Au(HK)

10 — 0.309 Neg 0.348 — 0.399
20 0.214 0.389 Neg 0.492 — 0.603
30 0.257 0.486 Neg 0.637 — 0.767
40 0.321 0.583 0.079 0.754 0.496 0.871
50 0.935 0.671 0.208 0.838 0.647 0.932
60 0.485 0.745 0.334 0.896 0.747 0.968
70 0.585 0.806 — 0.936 0.808 0.988
80 0.681 0.853 0.466 0.962 0.842 0.998
90 0.773 0.891 — 0.980 0.860 1

100 0.860 0.919 — 0.991 — 1
110 — 0.942 — 0.998 — 1
120 — 0.958 — 1 — 1
130 — 0.971 — 1 — 1
300 0.949† 1 0.782† 1 0.927† 1

†Lattice expansion considered.

The largest discrepancy can be found for silver where—as shown in [5]—the largest
averaging corrections (also for electron–phonon scattering) are expected. As shown in
table 2 the use of the standardTGM with the physically indicated neck angle gives negative
Aph-values below 40 K in contrast to the values from theAph–Ag-curve of figure 7.
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4.2. Calculation of anisotropy parameters fromDMR curves

In [4] it was suggested that for the fits of experimentalDMR curves (i) withε < 20% quasi-
isotropic Aph(T )-curves but (ii) forε > 20% isotropicAph(T )-curves would be a good
choice. In order to see this behaviour in more detail we will determineAph(T ) explicitly
from the normalized experimentalDMR curves withAdis and ρd fixed by a fit of theDMR

step height (D(130 K) − D(4.2 K)) where Aph(130 K) ≈ 1 is a well established value
(to be precise, we use always for the step height fitsAph(130 K) = 0.97 for copper and
Aph(130 K) = 1 for silver and gold according to figure 7). However, we have to be aware
that forT < 40 K the relaxation time approximation is not expected to work very well, due
to the influence of small-angle scattering [22].

Our experimentalDMR curves have the form (see [5, 4])

ρd,ex(T ) = ρd + δipd − δpi (8)

or the normalized form

D(T ) = (ρd + δipd − δpi)/(ρd + δid) (9)

whereD(T ) = ρd,ex(T )/ρd,ex(4.2) andρd,ex(T ) is the experimental dislocation resistivity,
being the difference in resistivity between a deformed sample and an undeformed reference
sample [4]. ρd is the true dislocation resistivity.δipd and δpi are DMRs originating in the
deformed (three scatterers) and undeformed reference samples (two scatterers), respectively.
δid equals theDMR δipd at 4.2 K where the influence of the phonons can be neglected. For
the DMR fits within the TGM it is assumed (as in [4, 5]) that theDMRs δipd (δid at 4.2 K)
and δpi in (9) can be described by equation (7) at least at the two fitting points at 4.2 K
and 130 K (the fit of theDMR step height). The two free fitting parameters areAdis andρd

which have to be adjusted in such a way that

(i) ρd + δid = ρd,ex(4.2 K)

(ii) D(130 K) = [ρd + δ(130 K, ε) − δ(130 K, ε = 0)]/[ρd + δ(4.2 K, ε)].
(10)

Since we use high-purity samples, we always findρd,ex(4.2 K) ≈ ρd, so the most important
fitting parameter isAdis. Making use of these resulting values,Adis andρd the full temp-
erature dependence ofD(T ) can be determined within theTGM if the curves of the ideal
resistivityρP(T ) [13] andAph(T ) (see figure 7) are used. The values ofAim andρim of the
various materials used in the following are given in table 3.

Table 3. Parameters of theTGM used.

GF copper ME copper Ag Au

ρim (n� cm) 0.598 1.182 2.3 2.3
Aim 0.26a 0.17a 0.32b 0.51a

a s = 1 with a = 0 was used (see (1) of [5]).
b s = 1.17 andr = 1.50 were used analogously to [5].

The first step of the determination ofAph(T ) is to fit the experimentalDMR curves (see
section 3.2) at 4.2 K and 130 K according to (10) in order to obtainAdis and ρd. As a
second step we consider the full temperature variation of (10), already having good values
for Adis andρd:

D(T ) = [ρd + δ(T , ε) − δ(T , ε = 0)]/ρd,ex(4.2 K) (11)
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where we have replacedρd + δ(4.2 K, ε) in the second line of (10) byρd,ex(4.2 K). We
model theDMR δ(T , ε = 0) (approaching theDMR δpi of the reference sample (see (8)) as
a fixed function of temperature by using a correspondingAph(T )-curve of figure 7. Then
only the termδ(T , ε) (approaching theDMR δipd of the deformed sample) contains some
unknown variation ofAph(T ) (see (7)). Hence,Aph(T ) can be fitted or calculated explicitly
(a quadratic equation inAph) from (11).

Figure 9 shows the fittedAph(T )-curves resulting from the experimentalDMR curves for
the ME copper (see figure 2). The 1% and 4.9% curves giveAph-values agreeing perfectly
with the (theoretical)Aph–Cu-curve down to 20 K. The discrepancy from the Barnard curve
(crosses) is obvious. Of course the experimental error of theD(T )-curves [4] which is
larger at lower dislocation densities will be reflected by the fittedAph(T )-curves. Therefore
not all curves with smallε are expected to agree equally with theAph–Cu-curve.

Figure 10. Fitted Aph-curves for the experimentalDMR curves of theGF copper shown in
figure 1. The numbers indicate the true strainε in %. R means deformation by rolling.M, the
theoreticalAph–Cu-curve and×, theAph-curve for copper after Barnard [3] for comparison.

The fittedAph(T )-curves resulting from theD(T )-curves of theGF copper (see figure 1)
are plotted in figure 10. Here only the 5.1% curve agrees perfectly with theAph–Cu-curve
down to 40 K. In the temperature range whereT < 40 K the curves from 2% to 15%
are of similar character but deviate more at lower temperature. However,DMR curves for
ε > 20% give not simple isotropic but anisotropic behaviour in the inverse direction with
fitted valuesAph > 1 from 100 K down to nearly 20 K (a maximum is reached at around
20 K; figure 10). As there is no alternative explanation for such highAph-values, this
increase of the fittedAph(T )-curves must be due to aDMR contribution which cannot be
described by the formulae used up to now. As can be seen from (7) the only possibility for
increasing theDMR in the model description is by increasing the differences in anisotropy
parameters by using extremely high values ofAph. We may conclude that theTGM is
considerably in error if the dislocation density is increased or if otherDMR contributions
have to be taken into account. These points will be discussed in section 4.3.

AnalogousAph(T )-curves fitted to the experimentalD(T )-curves of silver and gold
samples are shown in figure 11. The calculated curve for the silver sample withε = 20%
(deformed by tensile test) agrees rather well down to 30 K with the estimatedAph–Ag-curve
(see also figure 7). TheAph(T )-curve for silver derived from theLFHE after Barnard [2] is
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Figure 11. FittedAph-curves for the experimentalDMR of silver samples containing dislocations
shown in figure 3 and the gold samples Au100 (ε = 112%) and Au50 containing dislocations
(ε = 66%) of [5]. The numbers indicateε for the silver samples (R means deformed by
rolling). M, the ‘theoretical’Aph–Ag-curve and×, theAph-curve for silver after Barnard [2] for
comparison.

only somewhat lower. For the rolled silver and gold samples the same situation as for the
rolled GF copper samples can be found. The fittedAph(T )-curves also reach a maximum
near 20 K but at a value larger value than 2 (not shown). This means that the physics
of DMRs for samples containing dislocations and of the electron–phonon scattering is very
similar for all three noble metals. From the deviation of the fittedAph-values from the
‘theoretical’ Aph–Cu-curve andAph–Ag-curve (see figures 10 and 11) it can be seen that
the TGM becomes less reliable with increasing deformation and falling temperature.

Figure 12. The difference between the experimental (D(exp)) and modelled (fitted)DMR curves
(D(mod)) for the GF copper samples for some fixed temperatures: (♦) 30 K; (M) 40 K; (×)
50 K; (�) 60 K; and (+) 70 K. The full lines are guides for the eyes.
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4.3. The discrepancy between experimental and modelled DMR curves

We confine the following analysis to the set ofGF copper samples where the whole
deformation range can be considered. For these samples the difference between experimental
curves (D(exp)) and modelled (using theTGM) DMR curves (D(mod)) for some fixed
temperatures can be seen in figure 12. The points forD(mod) were calculated choosingρd

andAdis after the condition of (10) and using theAph–Cu-curve according to figure 7 (the
usual fitting calculation for theDMR step height). The differenceD(exp)−D(mod) increases
with ε up toε ≈ 20% and then reaches an approximately constant level having the maximum
value 0.28 (which means up to about 28% of theDMR step heightD(130 K) − D(4.2 K))
at 50 K to 60 K (compare figure 1). Two further details may be seen in figure 12. Firstly
D(exp)−D(mod) is largest at 50 K to 60 K for allε. Secondly there is a general tendency
for a slight decrease ofD(exp) − D(mod) with increasingε after each maximum.

The discrepancyD(exp) − D(mod) found has to be interpreted as aDMR which is not
included in theTGM. Here two points have to be considered. Firstly theTGM neglects the
DMRs in the neck and belly groups of the conduction electrons [4] (apart from a possible
interactionbetweenneck and belly electrons). Secondly theTGM is based on the relaxation
time approximation which, however, is expected to be violated in the case of small-angle
scattering processes [22]. The fact that the maximum discrepancy occurs at around 50 K to
60 K could indicate a contribution to theDMR from small-angle scattering.

As discussed recently for copper [8] a contribution to theDMR arises even if isotropic
small-angle scattering (SAS) and isotropic large-angle scattering (LAS) processes act together.
Of course this contribution can be increased if different anisotropies are involved. Assuming
that dislocation scattering is predominantlyLAS [23], then this mechanism will produce a
DMR from the combination of small-angle phonon scattering and dislocation scattering.
Watts [9] has pointed out that calculating theDMR from this mechanism is complicated
because, in effect, what is needed is the difference of twoDMRs, one being from the
SAS phonons combined with the dislocations plusLAS phonons, and the other fromSAS

phonons combined with theLAS phonons (even more complicated if impurities are also
included). Rough preliminary calculations by Watts [9] based on his published curve [8]
suggest a contribution toD(T ) of up to about 0.2 which should be largest in the temperature
range where theSAS and LAS phonon scatterings are comparable. This corresponds to the
temperature range where we have a discrepancy to explain. Unfortunately Watts does not
expect the effect to disappear at low dislocation densities (D is normalized to the dislocation
resistivity in the sample).

We suggest that the main part of the discrepancyD(exp) − D(mod) in figure 12 may
be ascribed to combinedDMR effects fromSAS and LAS. The rest of the discrepancy could
be thought to stem from contributions to theDMR in the neck and belly groups, which are
neglected by theTGM [4]. Probably in the case of the low-deformation samples (where the
TGM fits rather well), the smaller inaccuracy of theTGM is partially covered by the fitted
parameters. So we may assume that the sources of theDMR discussed are sufficient for
understanding theDMR for noble metals containing dislocations.

5. Conclusions

The temperature dependences of theDMR for samples containing dislocations and of the
anisotropy of electron–phonon scattering are very similar for all three noble metals. This
can be easily seen if a temperature scale normalized to the Debye temperature is used.

From the LFHE, in general a more extreme variation of anisotropic electron–phonon
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scattering is derived compared to theDMR of samples containing dislocations that have low
deformation. The reason for this is the different averaging of relaxation times for (i) the
LFHE and electrical resistivity and (ii) theDMR.

If all of the parameters are considered carefully, especially the anisotropy parameters
of electron–phonon scattering and electron–impurity scattering, theTGM is able to describe
the temperature dependence of theDMR of samples containing dislocations rather well
in the limit of small deformations (ε < 10%). For samples withε ≈ 20% to 100%
considerable deviations of the modelledDMR curves from the experimental curves occur in
the temperature range 30 K to 60 K, contributing up to 28% of the normalizedDMR step
height.

The small-angle scattering processes seem to play an important role as regards the
temperature dependence of theDMR of samples containing dislocations. TheDMR which
is missed in the calculations within theTGM can be ascribed mainly to aDMR contribution
originating from large- and small-angle scattering.
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