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Abstract. In the limit of small deformation (true strain < 10%) it is possible to derive
from curves of the deviation from Matthiessen’s ruteiR) for samples containing dislocations

the anisotropy parameter of electron—phonon scatterig) as a function of temperature. In

this case the fittedipn-curves for copper and silver samples based on the two-group model
(tem) are in excellent agreement with the theoretical calculation of Hasegawa and Kasuya. In
contrastApp-curves derived from low-field Hall effect data within the (uncorrectexly are not
directly suitable fommr calculations due to the different averaging of relaxation times for the
conductivity and the Hall effect. For understandibgr curves with 10%< ¢ < 100% the
two-group model is insufficient. Up to about 0.2 of normalizedk seems to result from amr
between small- and large-angle scattering.

1. Introduction

The importance of the anisotropy of electron—phonon scattering for electronic transport

phenomena in noble metals has been known of for a long time [1]. Up to now it has

seemed that the most reliable information about this topic has been derived from the low-

field Hall effect ( FHE) measurements of Barnard [2, 3] by use of the two-group maash)

of the Fermi surface [1]. This was the basis on which the anisotropy paramgjgiB)

for electron—phonon scattering in ideally pure silver [2] and copper [3] were estimated.
However, theseApn(T)-results extracted in the framework of theem from

measurements of therHE did not seem to be very useful for the calculation of curves

of the deviation of Matthiessen’s rul®NR) for copper samples containing dislocations

[4]. As shown in an extensive analysis of them [5] these Apn(T)-values obtained from

the LFHE (i) depend on the neck angle of them and (ii) are expected to be influenced

by the different averaging of relaxation times in tt/He method compared with that in

the conductivity orbMR method (which can be described by ‘combined conductivities’

[4]). Here it should be noted that in the case of the conductivityDjar) method the

averaging of relaxation times is simpler than for timeie because no quadratic averaging

and no averaging with the curvature of the Fermi surface is involved [5]. So it is not

surprising that the extreme values &f,(T) at low temperatures obtained frorHE data

by Barnard [3] are not the best choice for the description oftilie curves for copper

samples containing dislocations [4]; for samples with deformatiors20% even isotropic

electron—phonon scattering seemed to be needed [4]. In this context the ‘more isotropic

theoretical Apn(T)-curve of Hasegawa and Kasuya [6] calculated for the ideal electrical

resistivity of copper is of interest. This curve deviates considerably from Barnard's curve

for copper [3] and will be checked faMR calculations in the present paper.
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The TGM and the ‘three-scatterer formula’ turned out to be good concepts [4, 5, 7]
for the description of theomMR step height of high-purity samples of the noble metals
containing dislocations in the temperature range 4.2 K to 140 K. However, there remained
always a considerable discrepancy between the experimental and manleteclirves in
the temperature range from say 40 K to 100 K. The aim of the present paper is to investigate
this discrepancy in more detail.

We calculateApn(T)-curves directly from experiment@MR curves with increasing
dislocation densities assuming the validity of the three-scattawe formula in order to
see how thesel(T)-curves differ from published curves. For this purpose we take into
account also the correct anisotropy parameters of electron—impurity scattering measured via
theLFHE which vary considerably from material to material. So we hope to establish suitable
Apn(T)-curves for the experimentalMR curves of noble metals containing dislocations at
least in the limit of low deformation.

In order to explain the discrepancy between the experimental and modmsied
curves we consider a possibteir contribution which cannot be explained by thewm:
the additionalbMR which occurs if large-angle and small-angle scattering are present
simultaneously and the relaxation time approximation fails [8]. This additiamat
contribution can be estimated approximately.

Finally important information for all three noble metals is obtained if different quantities
such as the ideal electrical resistivity, tb&r, the intrinsic pure Hall constant and the
Apn(T)-curves are plotted on a temperature scale normalized to the Debye temperature.

2. Electron—phonon scattering in theTGm

It is well accepted [1, 2] that in the noble metals a significant anisotropy of electron—phonon
scattering arises from the freezing out of Umklapp processes for belly electrons when the
temperature is lowered. In thesm this behaviour is simply described by a change in the
anisotropy parametesp, for electron—phonon scattering:

Aph = ™NP/TBP (1)

where typ and tgp are the relaxation times on the Fermi surface for the neck and belly
electrons of a pure sample (where the impurity contribution to the resistivity can be
neglected), respectively. The most direct acceséytas from the low-field Hall coefficient

Ry of a very pure sample material [5]:

—Ry = sf[1+ (/) AGral /(1 + Apnb)*. (2)

a, b and f are integrals over the Fermi surface and depend on the choice of the neck
angle of theTem. a and b are independent of temperaturg. depends only slightly on
temperature via the lattice expansion but this can be neglected for the present investigation.
r ands are correction parameters near unity which have to be taken into account if the
LFHE and electrical resistivity data are based on unique relaxation times. This means that
the temperature dependenceRy is only given by the variation ofip, with temperature.
In the following we use only the physically indicated neck anglésr theTGMm as discussed
in [5] and shown in table 1. This means in the cases of copper and gold that the corrected
TGM is simplified by using thed = 0 version'.

It follows from equation (2) that

Aph = [~bRy — v/ f(—arRy — bRy — afrs)]/(b* Ry + afr) (3)



Electron—phonon scattering in noble metals 5893

if a =0, and thus

Aph = [~bRy — v/— fb2s Ru)/ (b*Rw) (4)
or
s = [~Ru(L+ Apnb)?]/f. (5)

Otherwise the ideal resistivityp can be written within thetem as @ is Planck’s
constant)

1/pp = [€?/(127°1)](tapc + Tnpd) with ¢ = / v dS and d= / v ds.
B N
(6)

Common terms inRy (2) and pp (6) are typ, ep and b = d/c. From combining
equations (2) and (6)np and tgp could only be calculated correctly if the exact values of
r ands were known. Here it should be noted that, especially for silver, the standard
(r =s = 1) does not work becaus®, yields negative values faf,n (See table 2).

Table 1. Parameters of thecm used.

Cu Ag Au
0 (deg) 18.7 16.5 17.9
a 0 0.061 0
b 0.219 0.150 0.214

Ffaoimict 7.343 10.332 10.046
c (10" m syt 2156  2.317  2.004
d (A m1sht 4732 3464  4.298

tCalculated by Watts [9].

In the case of theomR for samples containing dislocation$,y, is involved via the
three-scatterer formula [4]:

3 3 -1
8(T.e) =Y pipj+1bAjs2(Aj — A1) (Z pi(1+ bA,»)ZA,»HAHz) ™
j=1 j=1

with the cyclic notationes = p1, ps = p2, As = A1, As = A,, whereA; is the scattering
anisotropy parameter of thgth scatterer (phonons, impurities and dislocations) anis
the resistivity of thejth scatterer on its own. The terinis the same as in (2).

3. Experimental details

3.1. Sample material

The sample material used for the present investigation was oxygen-annealed 99.99%-pure
silver and gold described in [5], 99.9999%-pure copper from METALLEUR@®P dopper

in the following) and oxygen-annealed 99.99%-pure copper from GOODFELLGW (
copper in the following) described in [4, 7, 10]. The procedure forokie measurements

and evaluation of experimental curves can be found in [4, 5, 7, 10].
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Figure 1. NormalizedpmR curves forgr copper samples. The numbers indicate the true strain
¢ in %. R indicates deformation by rolling.
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Figure 2. Normalizedpmr curves forme copper samples. Numbers: true straim %.

3.2. DMR results used for the model calculations

Different aspects obMR curves of the copper materials were published recently [4, 7, 10].
Usually thebMR is described as a function of temperature depending on the experimental
dislocation resistivitypq ex(7) or as the normalized quantitl)(T) = pqg.ex(T)/pd.ex(4.2),
where pq.ex(4.2) is the experimental dislocation resistivity at 4.2 K. Figure 1 shows a
summary of smoothed experiment@lT)-curves for a set o&F copper sampless(= 2%

to 104%) to outline the principal behaviour of experimem®iR curves for noble metals.
Similar curves are shown in figure 2 for some only slightly deformedcopper samples.
D(T)-curves for silver £ = 20% to 116%) can be seen in figure 3. For a better overview
the single data points are not shown, but the quality of data can be assessed elsewhere
[4, 5, 10, 11] (see also figure 8). The curves of figures 1 to 3 as well as two curves for
gold shown in [5] will be analysed in the following sections.
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Figure 3. Normalizedpmr curves for silver samples. Numbers: true straiim %. R indicates
deformation by rolling.
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3.3. Debye normalization

It is well known [12] that a universal resistivity curve is obtained for many metals if the
temperature is normalized to the Debye temperatu@nd the resistivity to its value &.
Figure 4 shows this picture for the ideal phonon resistivity of the noble metals [13] which
is used in the following analysis. F@ we use the values 346 K for copper, 226 K for
silver and 164 K for gold [14]. Only the curve for gold in figure 4 has a small deviation,
but the global behaviour of all three noble metals is the same.

Figure 5 shows th®MmR curves ats ~ 100% for the samples Cul00 (copper), Ag100
(silver) and Aul00 (gold) of [5] normalized t©. SinceD(T) is only a weak function of
temperature above 100 K the approximation?)/D (130 K) ~ D(T)/D(®) is used. For
all three noble metals these reducedr curves lie within a certain band, which shows
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Figure 5. pMmR curves of noble metals containing dislocationssatr 100% (see the text)
normalized to the Debye temperatupe [J, copper;x, silver; anda, gold.

that theDMR is also governed by very similar scattering behaviour in each noble metal. In
contrast to the phonon resistivity in figure 4, the errors of e curves are appreciably
larger (error bars twice the symbol sizes have to be assumed). Moreover some genuine
differences in the individual anisotropy parameters due to differences in the Fermi surface
[5] should be monitored. ThemRr curves at: ~ 50% for the samples Cu50 (copper), Ag50
(silver) and Au50 (gold) of [5] give exactly the same band in a reduced plot, so the latter
are not shown.
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Figure 6. The low-field Hall coefficient of ideal pure noble metals (see the text) normalized to
the Debye temperatur®. [J, copper;x, silver; and () gold.

The low-field Hall coefficient of pure noble metals (electron—phonon scattering is
dominant) normalized t@® can be seen in figure 6 assumily(®) ~ Ry(300. The
Ry (T)-data are taken from the work of Barnard for ideally pure copper [3] and ideally pure
silver [2]. The Ry(T)-data for gold are taken from tabulated results of Aldersbal [15]
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as far as available in the low-field condition (only down to 40 K). Thus, only the influence
of electron—phonon scattering and of different Fermi surfaces [5] is shown in figure 6.
Obviously, the reducedky-data also lie within a certain band, like tlmvr curves in

figure 5. The data for copper and silver agree roughly, whereas for gold a tendency towards
some deviation is indicated (the largest deviation from the spherical Fermi surface [5]).
Unfortunately, up to now nerFHE data for pure gold have been available for temperatures
between 40 K and 4.2 K.

From figures 4, 5 and 6 it may be concluded that #yg(T)-curves for all three noble
metals reduced to the Debye temperature should also lie within some band. This means
that if the Apn(T)-function is known for at least for one metal, tign(7T)-curves for the
other two metals could be estimated by applying the related Debye temperature.

4. Discussion

4.1. The anisotropy parameters of electron—phonon scattering

From a previous paper [5] it can be learnt that ther gives simpler and more reliable
information about anisotropy parameters thantiiee where the situation is complicated by

the curvature of the Fermi surface and quadratic averaging effects (as long as the correction
parameters are not known). This was shown particularly4fgs, the anisotropy parameter

for electron—dislocation scattering [5].
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Figure 7. The anisotropy parameter of electron—phonon scatteriyg) (for the noble metals
as a function of temperature based on [6]. ——, copper &he-Cu-curve);- - - -, silver (the
Apn—Ag-curve); and - - - - - , gold (the App—Au-curve).

For Apn(T') for copper it was shown very roughly in [4] that a quasi-isotropjs(T)-
curve (without being based on physical arguments) gives better fits to experirnemal
curves at low deformations(< 20%) than the rather anisotropic curve of Barnard [3]
derived from theLFHE for copper. This fact encourages us to use the nearly forgdifen
curve of Hasegawa and Kasuya [6] calculated for copper Htheurve in the following)
which lies in fact between the quasi-isotropic curve of [4] and Barnard’s curve.HKhe
curve was calculated by using a variational method and adjusted to the (ideal) measured
electrical resistivity. This calculation was based on the band structures of Burdick and
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the measured phonon spectrum. Thecurve starts B2 K with the value 0.27 (compare
figure 7 described below), has the value 0.48 at 30 K, reaches the value 1.0 at 165 K and
the value 1.04 at 300 K [6]. Although the investigations of Hasegawa and Kasuya [6, 16]
have been cited many times [17-21], no attention has been paid to this curve, because it
did not fit to theLFHE of copper [3] and had4py-values slightly larger than unity near
room temperature. The latter problem was commented on in [6] as possibly resulting from
a somewhat too large s—d hybridization effect in Burdick’s band.

In order to have no contradiction to the successful assumption of isotropic electron—
phonon scatteringApn = 1) near room temperature [5], we simply set the high-temperature
part of theHk-curve to unity (which is a rather small correction to the maximum value 1.04
of the original curve) and smoothed the curve (using a curve-fitting program). The result
can be seen in figure 7 as the full line (thg.—Cu-curve in the following). Additionally, as
suggested above, we have reduced this curv®fiyu) and multiplied the reduced values
by ©(Ag) and ©(Au) in order to get also some estimate of thg,(T)-curves for silver
and gold . These results are shown by the dashedAtheAg-curve) and dotted lines (the
Apn—Au-curve) in figure 7.
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Figure 8. Fits of experimentabmr data of twome copper samples (pointsxxj e = 1% and
(O) & = 4.9%) using theApn—Cu-curve (—) and theipp-curve after Barnard [3]-(-- - ).
The fitting condition is the coincidence of experimental data and models at 4.2 K and 130 K.

Figure 8 showsDMR fits (see equation (10) below) favne copper samples with
e = 1% ande = 4.9% using theAp—Cu-curve of figure 7. Excellent agreement with
the experimental curves can be seen. The same good result is obtained &srdbpper
samples withe = 5.1% having a normalizedMR curve identical to that of theie copper
at 4.9%. Therefore the latter curve is not shown. For comparison the fits with Hi&)-
curve of Barnard obtained from theHE data are also shown in figure 8 (dotted lines);
however, they deviate significantly from the fits with tAg—Cu-curve (after Hasegawa
and Kasuya [6]) and the experimental points. Hence, we have the very clear result that
also in case of electron—phonon scattering,Lifiee and electrical resistivity obMR require
different relaxation times if the different averaging of the two effects is not considered in
the TGMm (see the parametsrin (2) to (5)). For the case afyp-values at 300 K this was
already indicated in [5].

Table 2 underlines the differert,n(7)-values calculated from the-HE data within the



Electron—phonon scattering in noble metals 5899

1
08}
06

o

[=3
<t

04

02

X Il i

O ! i 1 | I 1 1
0 20 40 60 &0

T (K)

100 120 140

Figure 9. Fitted Aph-curves for the experimentaMr curves of theve copper shown in figure 2.
,e=49%; ---.-- , & =1%; - ---, ¢ =31%; — —, ¢ = 2%, A, the theoreticald pn—
Cu-curve andx, the App-curve for copper after Barnard [3] for comparison.

standardrem (r = s = 1) using (3) related to thelpn(7')-curves of figure 7. The same
Ry-data as for figure 6 were used. The values of the second column of table 2 (Cu(LF)) are
rather near to Barnard’4apn(T)-curve [3] obtained fromFHE data. A graphical comparison

of this Barnard curve with thel,n—Cu-curve (figure 7) can be seen in figure 9.

Table 2. A comparison ofApn(T)-values for the noble metals derived by two different methods.
LF indicates evaluation fromrHE data,Hk indicates values after the curves in figure 7 based on
[6]. ‘Neg’ indicates negative values which are unphysical.

T (K) Cu(rF) CurHk) Ag(F)  Ag(HK)  Au(F)  Au(HK)

10 — 0.309 Neg 0.348 — 0.399
20 0.214 0.389 Neg 0.492 — 0.603
30 0.257 0.486 Neg 0.637 — 0.767

40 0.321 0.583 0.079 0.754 0.496 0.871
50 0.935 0.671 0.208 0.838 0.647 0.932
60 0.485 0.745 0.334 0.896 0.747 0.968

70 0585 0.806 — 0.936  0.808  0.988
80 0681 0853 0466 0962  0.842  0.998
9 0773 0891 — 0.980 0860 1

100  0.860 0919 — 0991  — 1

110  — 0942 — 0998 — 1

120 — 0958 — 1 — 1

130  — 0971 — 1 — 1

300 0949 1 0782 1 0927 1

tLattice expansion considered.

The largest discrepancy can be found for silver where—as shown in [5]—the largest
averaging corrections (also for electron—phonon scattering) are expected. As shown in
table 2 the use of the standardm with the physically indicated neck angle gives negative
Apn-values below 40 K in contrast to the values from the—Ag-curve of figure 7.
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4.2. Calculation of anisotropy parameters franmir curves

In [4] it was suggested that for the fits of experimem®R curves (i) withe < 20% quasi-
isotropic Apn(T)-curves but (i) fore > 20% isotropic Apn(T)-curves would be a good
choice. In order to see this behaviour in more detail we will deterrdipg7) explicitly
from the normalized experimentaMR curves withAgis and pq fixed by a fit of thebmRr
step height D(130 K) — D(4.2 K)) where App(130 K) ~ 1 is a well established value
(to be precise, we use always for the step heightAgg(130 K) = 0.97 for copper and
Apn(130 K) = 1 for silver and gold according to figure 7). However, we have to be aware
that forT < 40 K the relaxation time approximation is not expected to work very well, due
to the influence of small-angle scattering [22].

Our experimentabMR curves have the form (see [5, 4])

pd,ex(T) = pd + Sipd — Spi (8)
or the normalized form
D(T) = (pd + Sipd — 8pi)/(Pd + Sid) 9

where D(T) = pg.ex(T)/pd.ex(4.2) and pqex(T) is the experimental dislocation resistivity,

being the difference in resistivity between a deformed sample and an undeformed reference
sample [4]. pq is the true dislocation resistivitysi,q and 8, are DMRs originating in the
deformed (three scatterers) and undeformed reference samples (two scatterers), respectively.
8iq equals thepMR §ipg at 4.2 K where the influence of the phonons can be neglected. For
the DMR fits within the TGMm it is assumed (as in [4, 5]) that tTEMRS Sipg (Sig at 4.2 K)

and 8y in (9) can be described by equation (7) at least at the two fitting points at 4.2 K
and 130 K (the fit of theoMR step height). The two free fitting parameters dgg and pq

which have to be adjusted in such a way that

(i) pd + 8id = pd,ex(4.2 K)
(i) D(130 K) = [pg + 8(130 K, &) — 8(130 K, ¢ = 0)]/[pg + §(4.2 K, &)].

Since we use high-purity samples, we always figdx(4.2 K) ~ pq, SO the most important
fitting parameter isAgis. Making use of these resulting valuesgs and pg the full temp-
erature dependence @i(T) can be determined within thesm if the curves of the ideal
resistivity pp(T') [13] and Apn(T') (see figure 7) are used. The valuesAgh and pin of the
various materials used in the following are given in table 3.

(10)

Table 3. Parameters of theem used.

GF copper ME copper Ag Au
pim (N2 cm)  0.598 1.182 2.3 2.3
Aim 0.2¢° 0.17 032 057

a5 =1 with a = 0 was used (see (1) of [5]).
b ¢ =1.17 andr = 1.50 were used analogously to [5].

The first step of the determination dfn(7) is to fit the experimentabMR curves (see
section 3.2) at 4.2 K and 130 K according to (10) in order to obthig and p4. As a
second step we consider the full temperature variation of (10), already having good values
for Agis and pq:

D(T) =[pa+ (T, &) = 8(T, & = 0)]/pg.ex(4.2 K) (11)
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where we have replaced; + §(4.2 K, ¢) in the second line of (10) byqex(4.2 K). We
model theDMR §(T', ¢ = 0) (approaching th@MR §p; of the reference sample (see (8)) as
a fixed function of temperature by using a correspondipg(7)-curve of figure 7. Then
only the termé(T, ) (approaching themR §ipq oOf the deformed sample) contains some
unknown variation ofApn(7') (see (7)). Hencedpn(T') can be fitted or calculated explicitly
(a quadratic equation idpp) from (11).

Figure 9 shows the fitted ,n(T)-curves resulting from the experimentar curves for
the ME copper (see figure 2). The 1% and 4.9% curves giyevalues agreeing perfectly
with the (theoretical ;r—Cu-curve down to 20 K. The discrepancy from the Barnard curve
(crosses) is obvious. Of course the experimental error of DKE)-curves [4] which is
larger at lower dislocation densities will be reflected by the fitge(7)-curves. Therefore
not all curves with smalk are expected to agree equally with thg—Cu-curve.

2

16
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08+

0.4 -

120 140

O 20 40 60 80 100
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Figure 10. Fitted Apy-curves for the experimentalvr curves of thecr copper shown in
figure 1. The numbers indicate the true straim %. R means deformation by rolling, the
theoreticalAp,—Cu-curve andx, the App-curve for copper after Barnard [3] for comparison.

The fitted Apn(T)-curves resulting from th@(T')-curves of thesF copper (see figure 1)
are plotted in figure 10. Here only the 5.1% curve agrees perfectly wit heCu-curve
down to 40 K. In the temperature range whdre< 40 K the curves from 2% to 15%
are of similar character but deviate more at lower temperature. Howewmer curves for
& > 20% give not simple isotropic but anisotropic behaviour in the inverse direction with
fitted valuesAp, > 1 from 100 K down to nearly 20 K (a maximum is reached at around
20 K; figure 10). As there is no alternative explanation for such Mghvalues, this
increase of the fittedipn(7')-curves must be due to BMR contribution which cannot be
described by the formulae used up to now. As can be seen from (7) the only possibility for
increasing theoMR in the model description is by increasing the differences in anisotropy
parameters by using extremely high valuesAy,. We may conclude that theGm is
considerably in error if the dislocation density is increased or if othe®R contributions
have to be taken into account. These points will be discussed in section 4.3.

Analogous Apn(T)-curves fitted to the experimentdd(T)-curves of silver and gold
samples are shown in figure 11. The calculated curve for the silver sample with0%
(deformed by tensile test) agrees rather well down to 30 K with the estindgied\g-curve
(see also figure 7). Thay,(T)-curve for silver derived from therHE after Barnard [2] is
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Figure 11. Fitted Apn-curves for the experimentaMr of silver samples containing dislocations
shown in figure 3 and the gold samples Aul@0= 112%) and Au50 containing dislocations
(¢ = 66%) of [5]. The numbers indicate for the silver samples (R means deformed by
rolling). A, the ‘theoretical’ Apy—Ag-curve andx, the App-curve for silver after Barnard [2] for
comparison.

only somewhat lower. For the rolled silver and gold samples the same situation as for the
rolled Gr copper samples can be found. The fittégh(7)-curves also reach a maximum
near 20 K but at a value larger value than 2 (not shown). This means that the physics
of DMRs for samples containing dislocations and of the electron—phonon scattering is very
similar for all three noble metals. From the deviation of the fitlggi-values from the
‘theoretical’ A,n—Cu-curve andAp—Ag-curve (see figures 10 and 11) it can be seen that
the TGM becomes less reliable with increasing deformation and falling temperature.

60
e (%)

Figure 12. The difference between the experiment@léxp) and modelled (fittedpmr curves
(D(mod)) for the cF copper samples for some fixed temperatures} 30 K; (a) 40 K; (x)
50 K; (@) 60 K; and @) 70 K. The full lines are guides for the eyes.
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4.3. The discrepancy between experimental and modelled DMR curves

We confine the following analysis to the set GfF copper samples where the whole
deformation range can be considered. For these samples the difference between experimental
curves D(exp) and modelled (using thecm) DMR curves O(mod) for some fixed
temperatures can be seen in figure 12. The pointDfgnod) were calculated choosingy

and Agis after the condition of (10) and using thg,—Cu-curve according to figure 7 (the
usual fitting calculation for themr step height). The differencB(exp)— D(mod) increases

with € up toe &~ 20% and then reaches an approximately constant level having the maximum
value 0.28 (which means up to about 28% of ther step heightD(130 K) — D(4.2 K))

at 50 K to 60 K (compare figure 1). Two further details may be seen in figure 12. Firstly
D(exp) — D(mod) is largest at 50 K to 60 K for akk. Secondly there is a general tendency
for a slight decrease ab(exp — D(mod) with increasings after each maximum.

The discrepancyD(exp) — D(mod) found has to be interpreted a®&R which is not
included in therGM. Here two points have to be considered. Firstly tie neglects the
DMRS in the neck and belly groups of the conduction electrons [4] (apart from a possible
interactionbetweenneck and belly electrons). Secondly them is based on the relaxation
time approximation which, however, is expected to be violated in the case of small-angle
scattering processes [22]. The fact that the maximum discrepancy occurs at around 50 K to
60 K could indicate a contribution to tlemr from small-angle scattering.

As discussed recently for copper [8] a contribution to the&r arises even if isotropic
small-angle scatteringAs) and isotropic large-angle scattering\§) processes act together.

Of course this contribution can be increased if different anisotropies are involved. Assuming
that dislocation scattering is predominantlys [23], then this mechanism will produce a
DMR from the combination of small-angle phonon scattering and dislocation scattering.
Watts [9] has pointed out that calculating tb#r from this mechanism is complicated
because, in effect, what is needed is the difference of bmes, one being from the

SAS phonons combined with the dislocations pluss phonons, and the other frosas
phonons combined with theas phonons (even more complicated if impurities are also
included). Rough preliminary calculations by Watts [9] based on his published curve [8]
suggest a contribution tB(7') of up to about 0.2 which should be largest in the temperature
range where thsAs and LAS phonon scatterings are comparable. This corresponds to the
temperature range where we have a discrepancy to explain. Unfortunately Watts does not
expect the effect to disappear at low dislocation densitiess(normalized to the dislocation
resistivity in the sample).

We suggest that the main part of the discrepafbgexp — D(mod) in figure 12 may
be ascribed to combinenivr effects fromsas andLAS. The rest of the discrepancy could
be thought to stem from contributions to th&r in the neck and belly groups, which are
neglected by theGm [4]. Probably in the case of the low-deformation samples (where the
TGM fits rather well), the smaller inaccuracy of thiem is partially covered by the fitted
parameters. So we may assume that the sources abmrediscussed are sufficient for
understanding themr for noble metals containing dislocations.

5. Conclusions

The temperature dependences of ther for samples containing dislocations and of the

anisotropy of electron—phonon scattering are very similar for all three noble metals. This

can be easily seen if a temperature scale normalized to the Debye temperature is used.
From theLFHE, in general a more extreme variation of anisotropic electron—phonon
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scattering is derived compared to ther of samples containing dislocations that have low
deformation. The reason for this is the different averaging of relaxation times for (i) the
LFHE and electrical resistivity and (ii) themr.

If all of the parameters are considered carefully, especially the anisotropy parameters
of electron—phonon scattering and electron—impurity scatteringrdiveis able to describe
the temperature dependence of th@r of samples containing dislocations rather well
in the limit of small deformationse( < 10%). For samples witlk ~ 20% to 100%
considerable deviations of the modellesir curves from the experimental curves occur in
the temperature range 30 K to 60 K, contributing up to 28% of the normatized step
height.

The small-angle scattering processes seem to play an important role as regards the
temperature dependence of ther of samples containing dislocations. Tb&Rr which
is missed in the calculations within them can be ascribed mainly to@vRr contribution
originating from large- and small-angle scattering.
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